Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 624(7991): 289-294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871614

RESUMO

Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4,5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.

2.
Adv Sci (Weinh) ; 10(4): e2204462, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36453567

RESUMO

Anion-dependent differences in the electromechanical energy harvesting capability of perovskite halides have not been experimentally demonstrated thus far. Herein, anion-dependent piezoelectricity and bending-driven power generation in high-quality methylammonium lead halide MAPbX3 (X = I, Br, and Cl) thin films are explored; additionally, anisotropic in situ strain is imposed to improve energy harvesting under tensile bending. After applying the maximum in situ strain of -0.73% for all the halide thin films, the MAPbI3 thin-film harvester exhibited a peak voltage/current of ≈23.1 V/≈1703 nA as the best values, whereas MAPbBr3 and MAPbCl3 demonstrated ≈5.6 V/≈176 nA and ≈3.3 V/≈141 nA, respectively, under identical bending conditions. Apart from apparent ferroelectricity of tetragonal MAPbI3 , origin of the piezoelectricity in both cubic MAPbBr3 and MAPbCl3 is explored as being related to organic-inorganic hydrogen bonding, lattice distortion, and ionic migration, with experimental supports of effective piezoelectric coefficient and grain boundary potential. Conclusively, piezoelectricity of the cubic halides is assumed to be due to their soft polarity modes and relatively low elastic modulus with vacancies contributing to space-charge polarization. In the case of ferroelectric MAPbI3 , the distortion of PbI6 octahedra and atomic displacement within each octahedron are quantitatively estimated.

3.
Nutrients ; 14(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296934

RESUMO

Primary liver cancer was the seventh most diagnosed cancer and the second leading cause of cancer death with about 906,000 cases and 830,000 deaths, respectively, in 2020. Conventional treatment for liver cancer, such as transarterial chemoembolization (TACE) or sorafenib, has limitations in that there is the recurrence of cancer, drug inefficacy, and adverse effects. Traditional medicine and natural products of several regions including Korea, China, Europe, North America, India, and the Middle East have attracted a lot of attention since they have been reported to have anticancer effects with low adverse effects. In this review, several in vivo studies on the effects of natural compounds on liver cancer and clinical trials approving their therapeutic benefits were selected and discussed. As a result of the analysis of these studies, the effects of natural compounds were classified into a few mechanisms: apoptosis, anti-metastasis, and antiangiogenesis. In addition, medications including natural products in clinical trials were observed to exhibit improvements in various liver cancer symptoms and patients' survival rates. This study presents findings suggestive of the anticancer potential of natural products and their properties in relieving related symptoms.


Assuntos
Antineoplásicos , Produtos Biológicos , Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/patologia , Sorafenibe/uso terapêutico , Quimioembolização Terapêutica/efeitos adversos , Carcinoma Hepatocelular/patologia , Compostos de Fenilureia/uso terapêutico , Niacinamida/efeitos adversos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Descoberta de Drogas , Medicina Tradicional , Resultado do Tratamento , Antineoplásicos/uso terapêutico
4.
Anim Cells Syst (Seoul) ; 26(4): 183-191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046027

RESUMO

Tannic acid (TA) is a polyphenolic compound that exerts protective effects under pathological conditions. The diverse mechanisms of TA can exert beneficial anti-oxidative, anti-inflammatory, and anti-cancer effects. Herein, we reported that TA affords robust neuroprotection in an animal model of stroke (transient middle cerebral artery occlusion; tMCAO) and exhibits Zn2+-chelating and anti-oxidative effects in primary cortical neurons. Following tMCAO induction, intravenous administration of TA (5 mg/kg) suppressed infarct formation by 32.9 ± 16.2% when compared with tMCAO control animals, improving neurological deficits and motor function. We compared the chelation activity under several ionic conditions and observed that TA showed better Zn2+ chelation than Cu2+. Furthermore, TA markedly decreased lactate dehydrogenase release following acute Zn2+ treatment and subsequently reduced the expression of p67 (a cytosolic component of NADPH oxidase), indicating the potential mechanism underlying TA-mediated Zn2+ chelation and anti-oxidative effects in primary cortical neurons. These findings suggest that anti-Zn2+ toxicity and anti-oxidative effects participate in the TA-mediated neuroprotective effects in the postischemic brain.

5.
Anim Cells Syst (Seoul) ; 26(3): 119-128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784390

RESUMO

Clinical observations have revealed that non-resolving low-grade inflammation is linked to the pathogenesis of chronic inflammatory diseases, for example arthritis, atherosclerosis, Alzheimer's disease, diabetes, and chronic kidney disease. Interestingly, low levels of circulating lipopolysaccharides (LPS) derived from the outer membrane of gram-negative bacteria appear to be one of the primary causes of persistent low-grade inflammation. The inner surface of the blood vessels is lined with endothelial cells; therefore, even low levels of circulating LPS can directly activate these cells and elicit specific cellular responses, such as an increase in the expression levels of cell adhesion molecules and proinflammatory mediators. In endothelial cells, LPS exposure results in an inflammatory response through activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases. Cynarin, a phytochemical found in artichokes, has several pharmacological properties against endothelial inflammation. In the present study, we discovered that cynarin suppressed the LPS-induced increase in the expression levels of vascular cell adhesion molecule-1 and proinflammatory mediators such as monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), and interleukin-1ß in EA.hy926 cells. Further, cynarin inhibited the activation of p38 and NF-κB pathways by inducing the negative regulator mitogen-activated protein kinase phosphatase 3 (MKP-3) in LPS-stimulated EA.hy926 cells. In conclusion, cynarin alleviates inflammation by upregulating MKP-3, a negative regulator of p38 and NF-κB, and it may be a therapeutic option for treating endothelial inflammation-related diseases.

6.
Mater Horiz ; 9(4): 1207-1215, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257128

RESUMO

Strain engineering has been recognized as a critical strategy in modulating the optoelectronic properties of perovskite halide materials. Here, we demonstrate a self-powered, flexible photodetector based on CsPbBr3 thin films with controllable compressive or tensile strain of up to ±0.81%, which was produced in situ via a sequential two-step deposition on bent polymer substrates. The best photoresponsivity of ∼121.5 mA W-1 with a photocurrent of 5.15 µA was achieved at zero bias under a power intensity of 0.47 mW cm-2 for the maximum tensile strain of +0.81%, which corresponds to a ∼100.2% increase relative to that of the unstrained case. The in situ tensile strain adjusted the band alignments, making them favorable for enhanced charge transport and thus a higher photoresponse. The structural origin of this superlative balanced photodetection performance was systematically revealed to be associated with the distortion of coupled PbBr6 octahedra and the atomic displacement within the octahedron.

7.
Mol Cells ; 44(10): 710-722, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34711689

RESUMO

Hypoxia, or low oxygen tension, is a hallmark of the tumor microenvironment. The hypoxia-inducible factor-1α (HIF-1α) subunit plays a critical role in the adaptive cellular response of hypoxic tumor cells to low oxygen tension by activating gene-expression programs that control cancer cell metabolism, angiogenesis, and therapy resistance. Phosphorylation is involved in the stabilization and regulation of HIF-1α transcriptional activity. HIF-1α is activated by several factors, including the mitogen-activated protein kinase (MAPK) superfamily. MAPK phosphatase 3 (MKP-3) is a cytoplasmic dual-specificity phosphatase specific for extracellular signal-regulated kinase 1/2 (Erk1/2). Recent evidence indicates that hypoxia increases the endogenous levels of both MKP-3 mRNA and protein. However, its role in the response of cells to hypoxia is poorly understood. Herein, we demonstrated that small-interfering RNA (siRNA)-mediated knockdown of MKP-3 enhanced HIF-1α (not HIF-2α) levels. Conversely, MKP-3 overexpression suppressed HIF-1α (not HIF-2α) levels, as well as the expression levels of hypoxia-responsive genes (LDHA, CA9, GLUT-1, and VEGF), in hypoxic colon cancer cells. These findings indicated that MKP-3, induced by HIF-1α in hypoxia, negatively regulates HIF-1α protein levels and hypoxia-responsive genes. However, we also found that long-term hypoxia (>12 h) induced proteasomal degradation of MKP-3 in a lactic acid-dependent manner. Taken together, MKP-3 expression is modulated by the hypoxic conditions prevailing in colon cancer, and plays a role in cellular adaptation to tumor hypoxia and tumor progression. Thus, MKP-3 may serve as a potential therapeutic target for colon cancer treatment.


Assuntos
Hipóxia Celular/genética , Neoplasias do Colo/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Humanos , Masculino , Camundongos , Transfecção , Microambiente Tumoral
8.
Anim Cells Syst (Seoul) ; 25(4): 235-244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408812

RESUMO

Endothelial cell dysfunction and inflammatory responses play critical roles in the development of atherosclerosis. Recent data on the processes underlying atherogenesis indicate the substantial role of endotoxins (lipopolysaccharides; LPS) of the intestinal microflora in the initiation and progression of atherosclerosis. Mitogen-activated protein (MAP) kinase phosphatase-3 (MKP-3) is a cytoplasmic dual-specificity protein phosphatase that specifically binds to and inactivates MAP kinases in mammalian cells, but its biological function in endothelial cell dysfunction and inflammatory responses remains largely unknown. The aim of the present study was to investigate the role of MKP-3 in endotoxin-induced endothelial inflammation by western blotting, quantitative polymerase chain reaction, and immunofluorescence. The results of our study demonstrated that MKP-3 overexpression markedly inhibited the adhesion of human monocytic THP-1 cells to human umbilical vein endothelial cells (HUVECs) by downregulating the expression of vascular cell adhesion protein 1 (VCAM-1) and pro-inflammatory cytokines. In contrast, MKP-3-encoding gene knockdown by small interfering RNA (siRNA) exacerbated LPS-induced endothelial dysfunction. Additionally, we found that MKP-3 overexpression inhibited LPS-induced p38 MAPK phosphorylation and decreased the nuclear translocation of nuclear factor kappa B (NF-κB) after LPS treatment, suggesting its implication in the LPS/Toll-like receptor 4 (TLR4)/p38/NF-κB pathway. Overall, these observations suggest that MKP-3 plays a protective role in endothelial dysfunction and may be a therapeutic target.

9.
Antioxidants (Basel) ; 9(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036328

RESUMO

Infertility, a couple's inability to conceive after one year of unprotected regular intercourse, is an important issue in the world. The use of natural products in the treatment of infertility has been considered as a possible alternative to conventional therapies. The present study aimed to investigate the effects and the mechanisms of various natural products on infertility. We collected articles regarding infertility and natural products using the research databases PubMed and Google Scholar. Several natural products possess antioxidant properties and androgenic activities on productive factors and hormones. Antioxidants are the first defense barrier against free radicals produced by oxidative stress (OS). They remove reactive oxygen stress (ROS), reducing insulin resistance, total cholesterol, fat accumulation, and cancer growth. Moreover, various natural products increase endometrial receptivity and fertility ability showing androgenic activities on productive factors and hormones. For example, Angelica keiskei powder and Astragalus mongholicus extract showed anti-infertility efficacies in males and females, respectively. On the other hand, adverse effects and acute toxicity of natural products were also reported. Tripterygium glycoside decreased fertility ability both in males and females. Results indicate that management of infertility with natural products could be beneficial with further clinical trials to evaluate the safety and effect.

10.
Int J Surg Case Rep ; 72: 503-506, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32698275

RESUMO

INTRODUCTION: Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disease that affects the vasculature of numerous organs. HHT is characterized by the presence of multiple arteriovenous malformations that lack intervening capillaries and result in direct connections between arteries and veins. PRESENTATION OF CASE: A 58-year-old South Korean female was admitted presenting with severe anemia, dizziness, and intermittent hematochezia. The patient had experienced chronic severe refractory gastrointestinal bleeding for years. She had an intermittent spontaneous epistaxis, telangiectasias in the oral cavity (tongue), and hepatic arteriovenous malformations and gastrointestinal telangiectasia. She underwent a segmental resection of a segment of the ileum and cecum (about 77 cm). After surgery, the patient experienced no more drops in hemoglobin count or symptoms of anemia and melena. She is living a normal life. CONCLUSION: The present case report is a surgical case of undiagnosed HHT with chronic refractory gastrointestinal bleeding. Surgical treatment is rarely required for gastrointestinal bleeding unless nonsurgical methods such as endoscopy/colonoscopy and angiography have failed.

11.
ACS Appl Mater Interfaces ; 11(14): 13244-13250, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30896144

RESUMO

The successful utilization of Pb-free piezoelectric materials is considered as critical since the piezoelectric material-based thin-film cantilever is still the preferred choice for commercial vibrational energy harvesters. Herein, we introduce a highly efficient piezoelectric energy harvester based on a Pb-free representative compound, Bi0.5Na0.5TiO3, which has not been explored so far. Applying a strong electric field for poling purposes brought unexpectedly huge changes in the dielectric constant and piezoelectric coefficient, which were responsible for the promising power density of 21.2 µW/cm2/g2/Hz with 537.7 mV output voltage and 2.22 µW output power for a 2 µm thick 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 thin-film cantilever. The power density value is the best so far compared with any reported values for thin-film-based harvesters. As the origin of the effects of poling, the surface potentials across the grain structure are discussed in conjunction with the defect-dipole alignment, as evidenced by the increased oxygen vacancies on the film surface under an external bias field.

12.
Nano Lett ; 19(2): 971-976, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608699

RESUMO

Organic-inorganic hybrid perovskites have been investigated extensively for use in perovskite-based solar cells and light-emitting diodes (LEDs) because of their excellent electrical and optical properties. Although the flexibility of perovskite LEDs has been studied through empirical methods such as cyclic bending tests, the flexibility of the perovskite layer has not been investigated systemically. Here, flexible and semitransparent perovskite LEDs are fabricated: a PEDOT:PSS anode and Ag nanowire cathode allow for flexible and semitransparent devices, while the use of a conjugated polyelectrolyte as an interfacial layer reduces the electron injection barrier between the cathode and the electron transport layer (SPW-111), resulting in enhanced device efficiency. Cyclic bending tests performed on the electrodes and in situ hole-nanoindentation tests performed on the constituent materials suggest that mechanical failure occurs in the perovskite MAPbBr3 layer during cyclic bending, leading to a decrease in the luminance. Tensile properties of the MAPbBr3 layer explain the critical bending radius ( rb) of the perovskite LEDs on the order of 1 mm.

13.
Adv Mater ; 31(20): e1805244, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30663137

RESUMO

Metal halide perovskites (MHPs) have emerged as promising emitters because of their excellent optoelectronic properties, including high photoluminescence quantum yields (PLQYs), wide-range color tunability, and high color purity. However, a fundamental limitation of MHPs is their low exciton binding energy, which results in a low radiative recombination rate and the dependence of PLQY on the excitation intensity. Under the operating conditions of light-emitting diodes (LEDs), the injected current densities are typically lower than the trap density, leading to a low actual PLQY. Moreover, the defects not only initiate the decomposition of MHPs caused by extrinsic factors, but also intrinsically stimulate ion migration across the interface and lead to the corrosion of electrodes due to interaction between those electrodes, even under inert conditions. The passivation of defects has proven to be effective for mitigating the effects of defects in MHPs. Herein, the origins and theoretical calculations of the defect tolerance in MHPs and the impact of defects on both the performance and stability of perovskite LEDs are reviewed. The passivation methods and materials for MHP bulk films and nanocrystals are discussed in detail. Based on the currently reported advances, specific requirements and future research directions for display applications are suggested.

14.
Adv Sci (Weinh) ; 5(11): 1801350, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30479940

RESUMO

Metal halide perovskites (MHPs) have emerged as promising materials for light-emitting diodes owing to their narrow emission spectrum and wide range of color tunability. However, the low exciton binding energy in MHPs leads to a competition between the trap-mediated nonradiative recombination and the bimolecular radiative recombination. Here, efficient and stable green emissive perovskite light-emitting diodes (PeLEDs) with an external quantum efficiency of 14.6% are demonstrated through compositional, dimensional, and interfacial modulations of MHPs. The interfacial energetics and optoelectronic properties of the perovskite layer grown on a nickel oxide (NiO x ) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate hole injection interfaces are investigated. The better interface formed between the NiO x /perovskite layers in terms of lower density of traps/defects, as well as more balanced charge carriers in the perovskite layer leading to high recombination yield of carriers are the main reasons for significantly improved device efficiency, photostability of perovskite, and operational stability of PeLEDs.

15.
Am J Physiol Endocrinol Metab ; 315(1): E99-E109, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29558207

RESUMO

We evaluated the effects of intracerebroventricular administration (ICV) of brain estrogen and progesterone on menopausal symptoms and their effects on the secretion of follicle-stimulating hormone(FSH) and luteinizing hormone (LH) in estrogen-deficient rats. Three weeks after ovariectomy (OVX) or sham operation, OVX rats were given ICV infusions of either 17ß-estradiol (4 µg/day; ICV-E), progesterone(0.8 µg/day; ICV-P), or vehicle (control) for 4 wk. OVX rats in the positive-control group were orally provided 150 µg 17ß-estradiol·kg body wt-1·day-1. Sham rats had ICV vehicle infusion (normal-control). Serum 17ß-estradiol levels of ICV-E and ICV-P groups were higher than the control group but much lower than the normal- and positive-control groups. Tail skin temperature was higher in the control group than the other groups. Serum FSH and LH levels were much higher in the control group than positive- and normal-control groups, but ICV-E and ICV-P lowered the levels similar to the normal-control treatment. ICV-E and ICV-P prevented the decreased energy expenditure in OVX rats. Homeostasis model assessment estimate of insulin resistance was lowered in the descending order of the control, positive-control, ICV-P, ICV-E, and normal-control treatments. The decreased bone mineral density was prevented by the positive-control, ICV-E, and ICV-P treatments. The control group exhibited decreased short-term memory and spatial memory compared with the other groups. Surprisingly, the control group exhibited a decreased richness of the gut microbiome compared with normal-control group, and ICV-E protected against the decrease the most. In conclusion, small amounts of brain estrogen and, to some extent, progesterone improved menopausal symptoms by decreasing serum FSH levels and maintaining the diversity of the gut microbiome in estrogen-deficient rats.


Assuntos
Química Encefálica/fisiologia , Estrogênios/deficiência , Estrogênios/metabolismo , Microbioma Gastrointestinal , Menopausa , Animais , Glicemia/metabolismo , Densidade Óssea , Estradiol/farmacologia , Feminino , Hormônio Foliculoestimulante , Injeções Intraventriculares , Hormônio Luteinizante/sangue , Memória de Curto Prazo/efeitos dos fármacos , Ovariectomia , Progesterona/farmacologia , Ratos , Ratos Sprague-Dawley , Temperatura Cutânea/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
16.
Sci Rep ; 8(1): 1070, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348661

RESUMO

The beneficial use of a hole transport layer (HTL) as a substitution for poly(3,4-ethlyenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is regarded as one of the most important approaches for improving the stability and efficiency of inverted perovskite solar cells. Here, we demonstrate highly efficient and stable inverted perovskite solar cells by applying a GO-doped PEDOT:PSS (PEDOT:GO) film as an HTL. The high performance of this solar cell stems from the excellent optical and electrical properties of the PEDOT:GO film, including a higher electrical conductivity, a higher work function related to the reduced contact barrier between the perovskite layer and the PEDOT:GO layer, enhanced crystallinity of the perovskite crystal, and suppressed leakage current. Moreover, the device with the PEDOT:GO layer showed excellent long-term stability in ambient air conditions. Thus, the enhancement in the efficiency and the excellent stability of inverted perovskite solar cells are promising for the eventual commercialization of perovskite optoelectronic devices.

17.
Opt Express ; 25(13): 14043-14048, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28788989

RESUMO

We demonstrate a biocompatible optofluidic laser with an edible liquid laser gain medium, made of riboflavin dissolved in water. The proposed laser platform is based on a pulled-glass-capillary optofluidic ring resonator (OFRR) with a high Q-factor, resulting in a lasing threshold comparable to that of conventional organic dye lasers that are mostly harmful, despite the relatively low quantum yield of the riboflavin. The proposed biocompatible laser can be realized by not only a capillary OFRR, but also by an optical-fiber-based OFRR that offers improved mechanical stability, and is promising technology for application to in vivo bio-sensing.

18.
Nanoscale ; 9(5): 2088-2094, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28116382

RESUMO

Organic-inorganic hybrid perovskites have emerged as a next-generation candidate for light-emitting device applications due to their excellent optical and electrical properties with narrow band emission compared to organic emitters. The morphological control of perovskite films with full surface coverage and few defect sites is essential for achieving highly efficient perovskite light-emitting diodes (PeLEDs). Here, we obtain a highly uniform perovskite film with a remarkably reduced number of defect sites in a perovskite crystal using chlorobenzene dropping. This effort leads to the enhanced performance of PeLEDs with a CH3NH3PbBr3 film using chlorobenzene dropping with a maximum luminance of 14 460 cd m-2 (at 3.8 V) and a maximum external quantum efficiency (EQE) of 0.71% (at 2.8 V). This research confirms that the role of the solvent in the solvent dropping method is to fabricate a dense and uniform perovskite film and to passivate the defect sites of the perovskite crystal films.

19.
Adv Mater ; 28(32): 6906-13, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27239729

RESUMO

A perovskite LED with a perovskite film treated under optimum thermal annealing conditions exhibits a significantly enhanced long-term stability with full coverage of the green electroluminescence emission due to the highly uniform morphology of the perovskite film.

20.
Nanoscale ; 8(13): 7036-42, 2016 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-26607474

RESUMO

Solution-processable perovskite materials have garnered tremendous attention because of their excellent charge carrier mobility, possibility of a tunable optical bandgap, and high photoluminescence quantum efficiency (PLQE). In particular, the uniform morphology of a perovskite film is the most important factor in realizing perovskite light-emitting diodes (PeLEDs) with high efficiency and full-coverage electroluminescence (EL). In this study, we demonstrate highly efficient PeLEDs that contain a perovskite film with a uniform morphology by introducing HBr into the perovskite precursor. The introduction of HBr into the perovskite precursor results in a perovskite film with a uniform, continuous morphology because the HBr increases the solubility of the inorganic component in the perovskite precursor and reduces the crystallization rate of the perovskite film upon spin-coating. Moreover, PeLEDs fabricated using perovskite films with a uniform, continuous morphology, which were deposited using 6 vol% HBr in a dimethylformamide (DMF)/hydrobromic acid (HBr) cosolvent, exhibited full coverage of the green EL emission. Finally, the optimized PeLEDs fabricated with perovskite films deposited using the DMF/HBr cosolvent exhibited a maximum luminance of 3490 cd m(-2) (at 4.3 V) and a luminous efficiency of 0.43 cd A(-1) (at 4.3 V).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...